Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Vaccines (Basel) ; 10(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1792355

RESUMEN

Background: Due to findings on adverse reactions and clinical efficacy of different vaccinations against SARS-CoV-2, the administration of vaccination regimens containing both adenoviral vector vaccines and mRNA-based vaccines has become common. Data are still needed on the direct comparison of immunogenicity for these different regimens. Methods: We compared markers for immunogenicity (anti-S1 IgG/IgA, neutralizing antibodies, and T-cell response) with three different vaccination regimens (homologous ChAdOx1 nCoV-19 (n = 103), or mixture of ChAdOx1 nCoV-19 with mRNA-1273 (n = 116) or BNT162b2 (n = 105)) at two time points: the day of the second vaccination as a baseline and 14 days later. Results: All examined vaccination regimens elicited measurable immune responses that were significantly enhanced after the second dose. Homologous ChAdOx1 nCoV-19 was markedly inferior in immunogenicity to all other examined regimens after administration of the second dose. Between the heterologous regimens, mRNA-1273 as second dose induced greater antibody responses than BNT162b2, with no difference found for neutralizing antibodies and T-cell response. Discussion: While these findings allow no prediction about clinical protection, from an immunological point of view, vaccination against SARS-CoV-2 with an mRNA-based vaccine at one or both time points appears preferable to homologous vaccination with ChAdOx1 nCoV-19. Whether or not the demonstrated differences between the heterologous regimens are of clinical significance will be subject to further research.

2.
Clin Microbiol Infect ; 28(7): 1024.e1-1024.e6, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1783259

RESUMEN

OBJECTIVES: To examine the state of B-cell immunity 6 months after the second vaccination against SARS-CoV-2 in comparison to the state observed 2 weeks after vaccination. METHODS: Sera of 439 participants, whose immune responses to two doses of an mRNA-based vaccine (BNT162b2 or mRNA-1273) were previously characterized, was examined for anti-S1 IgG and IgA, anti-NCP IgG and neutralizing antibodies (nAb), and antinuclear antibodies (ANA). RESULTS: Levels of all examined markers decreased significantly from 2 weeks to 6 months after second vaccination (anti-S1 IgG: 3744 ± 2571.4 vs. 253 ± 144 binding antibody units (BAU)/mL; anti-S1 IgA: 12 ± 0 vs. 1.98 ± 1.75 optical density (OD) ratio; nAb: 100% ± 0% vs. 82% ± 19.3%), the vast majority of participants retaining reactive levels of anti-S1 IgG (436/439) and anti-S1 IgA (334/439) at 6 months. Immune responses were stronger for mRNA-1273 compared with BNT162b2 (anti-S1 IgG: 429 ± 289 vs. 243 ± 143 BAU/mL; anti-S1 IgA: 5.38 ± 3.91 vs. 1.89 ± 1.53 OD ratio; nAb: 90.5% ± 12.6% vs. 81% ± 19.3%). There was no meaningful influence of sex and age on the examined markers. There was a strong correlation between anti-S1 IgG and the surrogate neutralization assay (rho = 0.91, p <0.0001), but not for for IgA and the surrogate neutralization assay (rho = 0.52, p <0.0001). There was a ceiling effect for the association between anti-S1 IgG titres and the inhibition of binding between S1 and ACE2. ANA prevalence was unchanged from 2 weeks to 6 months after the second vaccination (87/498 vs. 77/435), as were the median ANA titres (1:160 vs. 1:160). DISCUSSION: Although the clinical consequences of decreasing anti-SARS-CoV-2 antibody titres cannot be estimated with certainty, a lowered degree of clinical protection against SARS-CoV-2 is possible. Persistently stronger responses to mRNA-1273 suggest that it might confer greater protection than BNT162b2, even 6 months after the second vaccination. Neither examined vaccinations induced ANA within the examined time frame.


Asunto(s)
Vacuna BNT162 , COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunoglobulina A , Inmunoglobulina G , SARS-CoV-2 , Vacunación
3.
Front Immunol ; 13: 811020, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1674341

RESUMEN

BACKGROUND: Heterologous vaccinations against SARS-CoV-2 with ChAdOx1 nCoV-19 and a second dose of an mRNA-based vaccine have been shown to be more immunogenic than homologous ChAdOx1 nCoV-19. In the current study, we examined the kinetics of the antibody response to the second dose of three different vaccination regimens (homologous ChAdOx1 nCoV-19 vs. ChAdOx1 nCoV-19 + BNT162b2 or mRNA-1273) against SARS-CoV-2 in a longitudinal manner; whether there are differences in latency or amplitude of the early response and which markers are most suitable to detect these responses. METHODS: We performed assays for anti-S1 IgG and IgA, anti-NCP IgG and a surrogate neutralization assay on serum samples collected from 57 participants on the day of the second vaccination as well as the following seven days. RESULTS: All examined vaccination regimens induced detectable antibody responses within the examined time frame. Both heterologous regimens induced responses earlier and with a higher amplitude than homologous ChAdOx1 nCoV-19. Between the heterologous regimens, amplitudes were somewhat higher for ChAdOx1 nCoV-19 + mRNA-1273. There was no difference in latency between the IgG and IgA responses. Increases in the surrogate neutralization assay were the first changes to be detectable for all regimens and the only significant change seen for homologous ChAdOx1 nCoV-19. DISCUSSION: Both examined heterologous vaccination regimens are superior in immunogenicity, including the latency of the response, to homologous ChAdOx1 nCoV-19. While the IgA response has a shorter latency than the IgG response after the first dose, no such difference was found after the second dose, implying that both responses are driven by separate plasma cell populations. Early and steep increases in surrogate neutralization levels suggest that this might be a more sensitive marker for antibody responses after vaccination against SARS-CoV-2 than absolute levels of anti-S1 IgG.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Neutralizantes/sangre , Vacuna BNT162/inmunología , ChAdOx1 nCoV-19/inmunología , Inmunización Secundaria/métodos , SARS-CoV-2/inmunología , Adulto , Factores de Edad , Anticuerpos Antivirales/sangre , Formación de Anticuerpos/inmunología , COVID-19/inmunología , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Factores Sexuales , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunación , Adulto Joven
4.
Clin Microbiol Infect ; 28(5): 701-709, 2022 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1415295

RESUMEN

OBJECTIVES: To investigate the response of the immune system (and its influencing factors) to vaccination with BNT162b2 or mRNA-1273. METHODS: 531 vaccinees, recruited from healthcare professionals, donated samples before, in between, and after the administration of the two doses of the vaccine. T- and B-cell responses were examined via interferon-γ (IFN-γ) release assay, and antibodies against different epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (S1 and NCP) were detected via ELISA and surrogate neutralization assay. Results were correlated with influencing factors such as age, sex, prior infection, vaccine received (BNT162b2 or mRNA-1273), and immunosuppression. Furthermore, antinuclear antibodies (ANAs) were measured to screen for autoimmune responses following vaccination with an mRNA vaccine. RESULTS: No markers of immunity against SARS-CoV-2 were found before the first vaccination. Two weeks after it, specific responses against SARS-CoV-2 were already measurable (median ± median absolute deviation (MAD): anti-S1 IgG 195.5 ± 172.7 BAU/mL; IgA 6.7 ± 4.9 OD; surrogate neutralization 39 ± 23.7%), and were significantly increased two weeks after the second dose (anti-S1 IgG 3744 ± 2571.4 BAU/mL; IgA 12 ± 0 OD; surrogate neutralization 100 ± 0%, IFN-γ 1897.2 ± 886.7 mIU/mL). Responses were stronger for younger participants (this difference decreasing after the second dose). Further influences were previous infection with SARS-CoV-2 (causing significantly stronger responses after the first dose compared to unexposed individuals (p ≤ 0.0001)) and the vaccine received (significantly stronger reactions for recipients of mRNA-1273 after both doses, p < 0.05-0.0001). Some forms of immunosuppression significantly impeded the immune response to the vaccination (with no observable immune response in three immunosuppressed participants). There was no significant induction of ANAs by the vaccination (no change in qualitative ANA results (p 0.2592) nor ANA titres (p 0.08) from pre-to post-vaccination. CONCLUSIONS: Both vaccines elicit strong and specific immune responses against SARS-CoV-2 which become detectable one week (T-cell response) or two weeks (B-cell response) after the first dose.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina A , Inmunoglobulina G , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
6.
Int J Infect Dis ; 110: 114-122, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1349465

RESUMEN

OBJECTIVES: To examine the relationship between antibody status and cycle threshold (Ct) values, the prognostic value of the latter for COVID-19 patients, and the inter-assay comparability of SARS-CoV-2 Ct values. METHODS: In 347 COVID-19 inpatients, SARS-CoV-2 Ct values (via reverse transcription-quantitative polymerase chain reaction) on admission were compared between 2 assays and correlated with the antibody response (in the course of the disease), the clinical course and the time since onset of symptoms. RESULTS: Ct values for 2 of 3 target genes showed significant differences between the 2 assays used (P=0.012 and P<0.0001). Ct values were significantly higher for antibody positive patients (P<0.0001) and positively correlated with the amount of time since onset of symptoms (R: 0.332-0.363; P<0.001). Patients with fatal outcomes showed higher viral loads than survivors (P<0.0001). CONCLUSIONS: Ct values depend strongly on assay used and target gene examined and should not be used as quantitative values to guide therapeutic or diagnostic decisions. The inverse association between antibody status and viral load suggests that antibodies contribute to the elimination of the virus, independent of the outcome, which is influenced by the viral load on admission and might depend more strongly on other parts of the immune response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Incidencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Reversa , Carga Viral
7.
Ann Rheum Dis ; 80(10): 1306-1311, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1150213

RESUMEN

INTRODUCTION: In light of the SARS-CoV-2 pandemic, protecting vulnerable groups has become a high priority. Persons at risk of severe disease, for example, those receiving immunosuppressive therapies for chronic inflammatory cdiseases (CIDs), are prioritised for vaccination. However, data concerning generation of protective antibody titres in immunosuppressed patients are scarce. Additionally, mRNA vaccines represent a new vaccine technology leading to increased insecurity especially in patients with CID. OBJECTIVE: Here we present for the first time, data on the efficacy and safety of anti-SARS-CoV-2 mRNA vaccines in a cohort of immunosuppressed patients as compared with healthy controls. METHODS: 42 healthy controls and 26 patients with CID were included in this study (mean age 37.5 vs 50.5 years). Immunisations were performed according to national guidelines with mRNA vaccines. Antibody titres were assessed by ELISA before initial vaccination and 7 days after secondary vaccination. Disease activity and side effects were assessed prior to and 7 days after both vaccinations. RESULTS: Anti-SARS-CoV-2 antibodies as well as neutralising activity could be detected in all study participants. IgG titres were significantly lower in patients as compared with controls (2053 binding antibody units (BAU)/mL ±1218 vs 2685±1102). Side effects were comparable in both groups. No severe adverse effects were observed, and no patients experienced a disease flare. CONCLUSION: We show that SARS-CoV-2 mRNA vaccines lead to development of antibodies in immunosuppressed patients without considerable side effects or induction of disease flares. Despite the small size of this cohort, we were able to demonstrate the efficiency and safety of mRNA vaccines in our cohort.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Huésped Inmunocomprometido/inmunología , Inmunogenicidad Vacunal/inmunología , Inflamación/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Estudios de Cohortes , Femenino , Humanos , Inmunosupresores/uso terapéutico , Inflamación/inmunología , Masculino , Persona de Mediana Edad , Enfermedades Reumáticas/tratamiento farmacológico , Enfermedades Reumáticas/inmunología , SARS-CoV-2 , Vacunas Sintéticas/inmunología
8.
N Engl J Med ; 384(9): e31, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1117382
9.
Sci Rep ; 11(1): 4363, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1099351

RESUMEN

Laboratory testing for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consists of two pillars: the detection of viral RNA via rt-PCR as the diagnostic gold standard in acute cases, and the detection of antibodies against SARS-CoV-2. However, concerning the latter, questions remain about their diagnostic and prognostic value and it is not clear whether all patients develop detectable antibodies. We examined sera from 347 Spanish COVID-19 patients, collected during the peak of the epidemic outbreak in Spain, for the presence of IgA and IgG antibodies against SARS-CoV-2 and evaluated possible associations with age, sex and disease severity (as measured by duration of hospitalization, kind of respiratory support, treatment in ICU and death). The presence and to some degree the levels of anti-SARS-CoV-2 antibodies depended mainly on the amount of time between onset of symptoms and the collection of serum. A subgroup of patients did not develop antibodies at the time of sample collection. Compared to the patients that did, no differences were found. The presence and level of antibodies was not associated with age, sex, duration of hospitalization, treatment in the ICU or death. The case-fatality rate increased exponentially with older age. Neither the presence, nor the levels of anti-SARS-CoV-2 antibodies served as prognostic markers in our cohort. This is discussed as a possible consequence of the timing of the sample collection. Age is the most important risk factor for an adverse outcome in our cohort. Some patients appear not to develop antibodies within a reasonable time frame. It is unclear, however, why that is, as these patients differ in no respect examined by us from those who developed antibodies.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , España
10.
Immunity ; 53(6): 1258-1271.e5, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: covidwho-988080

RESUMEN

CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Rhinovirus/inmunología , SARS-CoV-2/inmunología , Antígenos Virales/inmunología , Células Cultivadas , Reacciones Cruzadas , Progresión de la Enfermedad , Exposición a Riesgos Ambientales , Humanos , Memoria Inmunológica , Activación de Linfocitos , Unión Proteica , Índice de Severidad de la Enfermedad , Especificidad del Receptor de Antígeno de Linfocitos T
11.
Immunity ; 53(6): 1296-1314.e9, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: covidwho-965599

RESUMEN

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.


Asunto(s)
COVID-19/metabolismo , Células Eritroides/patología , Megacariocitos/fisiología , Células Plasmáticas/fisiología , SARS-CoV-2/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Circulación Sanguínea , COVID-19/inmunología , Células Cultivadas , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Proteómica , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA